Нижегородские математики разработали метод нахождения оптимальных решений - Информационный портал

Нижегородские математики разработали метод нахождения оптимальных решений

30 Октября 2017

Нижегородские математики разработали метод нахождения оптимальных решений

Группа математиков из Нижегородского государственного университета имени Н.И. Лобачевского усовершенствовала систему нахождения оптимальных решений под названием «диагональный подход» — наиболее быстрый способ глобальной оптимизации. Исследование выполнено при поддержке Российского научного фонда.

Принимая решения или обдумывая выполнение задач, человеческий мозг учитывает множество факторов, на которых сознание даже не успевает «остановиться». В диагональном подходе условия многопараметрических прикладных задач рассматриваются как многомерные гиперкубы, что позволяет провести точные расчеты для нахождения оптимального решения — такого решения, которое даст максимум пользы при минимальных затратах.

Гиперкуб, многомерная система многочисленных факторов и их сочетаний, разбивается на множество меньших гиперкубов, каждому из которых в соответствии с заданными параметрами приписывается числовая характеристика, значение которой определяет его перспективность в дальнейших поисках решения. Далее из этого множества выбираются такие гиперкубы, у которых числовые значения приоритетных для нас факторов — наивысшие. Отобранные гиперкубы продолжают разбиваться на гиперкубы поменьше, из которых также выбираются «лучшие», что в конце концов приводит к нахождению оптимального решения.

- Наш метод разбиения гиперкубов отличается от традиционных тем, что гиперинтервал разбивается на число подынтервалов, которое можно делить на три (при каждом разбиении возникают три, или девять, или 27 новых подынтервалов). Также диагонали этих гиперкубов вращаются в многомерном пространстве по предложенному нами правилу, в отличие от традиционных методов, где диагонали неподвижны и параллельны друг другу. Это вращение позволяет получить большее количество подынтервалов при уменьшении количества вычислений значений оптимизируемой функции, - рассказывает Я.Д. Сергеев, разработчик диагонального подхода глобальной оптимизации, профессор кафедры математического обеспечения и суперкомпьютерных технологий Института информационных технологий, математики и механики Нижегородского государственного университета имени Н.И. Лобачевского.

В настоящее время Я.Д. Сергеев с группой коллег разрабатывают модификацию диагонального метода с добавлением параллельных вариантов, которые позволят использовать системы суперкомпьютеров для речения задач высокой сложности.
Источник:  Министерство образования и науки РФ
Короткая ссылка на новость: https://www.nstar-spb.ru/~B5bnX


Газета «Санкт-Петербургский вестник высшей школы»

Санкт-Петербургский вестник высшей школы

музыкальный вестник